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2. (25 pts) When a high energy cosmic ray enters the top of Earth’s atmosphere,
4.00km above sea level, a muon is created.  The muon has a total relativistic energy E of
954 MeV (with respect to an observer in the Earth’s frame) and is traveling vertically
downward.  In the muon’s rest frame, the muon has a life-time of 1.56 s.  a) Calculate
the speed of the muon in units of c. b) Will this muon reach the surface of the Earth?  c)
If the answer is yes, how much time does it take for the muon to reach the surface of the
Earth in the muon’s rest frame? d) If the answer to b) is no, at what altitude above sea
level, according to an observer on the surface of the Earth, does the muon vanish when it
decays?    (The rest mass of the muon is 106 MeV/c2 or 281.89 10 kg .)

Solution: 

a) The total relativistic energy of the pion is 2E mc .

So, 
2 2 2

954
9

(106 / )

E MeV

mc MeV c c
   


. 

From the definition of the Lorentz factor, we have 

2 2
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v c c
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
  

           



This gives 0.994v c . 

b) Then, according to the muon, the distance that it needs to travel is Lorentz
contracted,

0 / 4 / 9 0.444 444L L km km m    .

But, with its limited life-time, the maximum distance that it can travel is 
6 8

0 1.56 10 (0.994)(3 10 / ) 465d v s m s m      

Since d’ > L, this muon will reach the surface of the Earth. 

c) In the muon’s rest frame, it has a contracted distance of 444m to travel and the
time of travel t0 according to the muon will be,

 
6

0 8

4000 1
/ 1.49 10 1.49

9 0.9938 3 10 /

m
t L v s s

m s


 
     
  

So, in the muon’s rest frame, it will reach the surface 0.07 s before it decays. 

d) It will reach the Earth’s surface.
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3. (25 pts)
An elementary particle Ko meson is initially at rest with respect to the laboratory frame.
It then decays into a pion o moving forward (in the direction the Ko meson was moving)
and another pion o moving backward.  The mass of a Ko is 498 MeV/c2, and the mass of
each pion o is 135 MeV/c2. Using conservation of relativistic momentum and energy,
determine the momentum and the total energy of the two emitted pions from the decay
process.

BEFORE the decay, the meson is at rest so that the total energy of the system is 2
iE Mc

where 2498 /M MeV c  is the rest mass of the meson and the initial momentum Pi is 
zero. 

AFTER the decay, the total energy of the two pions is given by: 
2 2

1 2fE mc mc   where 2135 /m MeV c  is the mass for the pion and  

2 2
1 11 1 v c    and 2 2

2 21 1 v c   are the their gamma factors. 

The final momentum is the sum of the momenta from the two pions: 

1 2 1 1 2 2fP P P mv mv    

Then, from conservation of energy and momentum, we have following two equations: 
2 2 2

1 2 (1)i fE E Mc mc mc    

1 1 2 20 (2)i fP P mv mv      

From Eq. (2), we have 1 2

1 2

1 2

2 2 2 2
1 2

2 2

2 2 2 2
1 2

2 2 2 2 2 2
2 1

1 2

1 1

1 1

(1 ) (1 )

v v

v c v c

v v

v c v c

v v c v v c
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 
 


 

  

 
and this gives 1 2    .  Substitute this back into Eq. 1, we can solve for the numerical 

value for , 

2 2

2 2

498 /
1.844

2 2 2 135 /

Mc M MeV c

mc m MeV c
    


. 

Then, we can solve for the speed of the pion,  
2 2 2

2 2

1 / 1/

1 1/ 1 1/1.844 0.84

v c

v

c





 

    
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This give pion #1 going forward with velocity +0.84 c and pion #2 going backward with 
velocity -0.84c. 

The momentum for pion #1 and #2 are then  

2
1 1

2
2 2

1.844 135 / 0.84

209 /

1.844 135 / ( 0.84 )

209 /

P mv MeV c c

MeV c

P mv MeV c c

MeV c





   


    
 

The energy for pion # 1 and #2 are: 

2 2 2
1 2 1.844 135 /

249

E E mc MeV c c

MeV

    

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4. (25 pts)
In a photoelectric experiment with a sodium metal surface, we find a stopping potential 
of 1.97 V for a light with wavelength ( 300.0nm  ) and of 0.94 V for a different light 
with wavelength ( 400.0nm  ). Using only this information, determine i) an 
experimental estimate for the Planck’s constant, ii) the work function of the sodium metal 
surface, and iii) the cutoff frequency for this sodium surface. [express energy in units of 
eV] 

From the two wavelengths, we have the following two equations: 

1

2

1.97 /

0.94 /

eV hc

eV hc

 
 

 
 

i) Subtracting the two equations, we arrive at a equation for h,

1 2

1
1 2

19
1 7

8

34

1.03 / /

1.03
(1/ 1/ )

1.03(1.602 10 )
(1/ 3 1/ 4) (10 )

3 10 /

6.60 10

eV hc hc

eV
h

c

J
m

m s

J s

 

  


 



 

 


 


  

This agrees with the actual Planck’s constant to the second significant figure. 

ii) Substituting this value for the Planck’s constant back into either of the two equations,
we have,

1

34 8
19 7

/ 1.97

1 1
6.60 10 ( )(3 10 / )( ) 1.97

1.602 10 3 10
4.12 1.97

2.15

hc eV

eV
J s m s eV

J m
eV eV

eV

 


 

 

    
 

 


iii) The cutoff frequency is

19 34

14

2.15 (1.602 10 /1 ) / 6.60 10

5.22 10

c

c

hf

f eV J eV J s

Hz


 



   

 
This frequency corresponds to a wavelength of 575 nm. 
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5. (25 pts)
An electron is trapped inside a rigid box of length L=0.250nm.  a) If the electron is 
initially in the second excited state, what is the wavelength of the emitted photon if the 
electron jumps to the ground state?  b) The wavefunction for the electron in its first 

excited state is given by 
2 2

( ) sin
x

x
L L

  .  What is the probability of finding the 

electron in the middle region of the rigid box, 
3

4 4

L L
x  .  c) Sketch the probability

density function for this first excited state.  What is (are) the most probable location(s) in 
finding the electron in its first excited state?  (The mass of an electron is 0.511 MeV/c2 or 

9.11x10-31kg.)  [  2 1
sin 1 cos 2

2
x x  ] 

a) The energy levels for an electron inside a rigid box is given by
2

2
2

, 1, 2,3,
8n

h
E n n

mL
    

For a transition from n=3 (2nd excited state) to n=1 (ground state), the emitted photon 
will have energy given by, 

 
2

2
2

1
2 2 6 2 2 2

3 1
8

1 8 1240
0.03883

8 (0.511 10 / )(0.25 )

25.8

h
hf
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hc eV nm

nm
mL c eV c nm c

nm






 


  




b) The probability of finding the particle in the desired region is given by

    

3 / 4 3 / 4
2 2

/ 4 / 4

3 / 4

/ 4

3 / 4

/ 4

2 2
( ) sin
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1 cos

1 4
sin

2
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L
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P x dx dx

L L

x
dx
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L






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    
 

        

     
   

      

 


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c) A graph of 
2

( )x  is given below

So, the most probable locations in finding the electron are at the two peaks located at 
x=L/4 and 3L/4. 

0 0.25 0.50 0.75 1.00

2(x)

X (in units of L)



6. What is the longest wavelength of light capable of ionizing a hydrogen atom in the 
ground state? What happens if the wavelength is shorter than this value?  [useful constant: 
hc=1242 eV.nm, 1eV  1.602 1019 J , h  6.6261034 J  s ]

Solution 
The energy required to ionize a hydrogen atom is 13.6 eV. The photon capable of 
producing this ionization must have at least this energy, if not higher. Since the photon 
energy is E = hf = hc/, it must have the wavelength of  

 = hc/E = (1.24103 eVnm)/(13.6 eV) = 91.2 nm

or smaller. 

Thus, the largest wavelength of light capable of ionizing the hydrogen atom is 91.2 nm, 
which is UV light. The electron knocked out of the atom by this photon has zero kinetic 
energy. Photons with smaller wavelengths also produce the ionization but the electron 
removed from the atom has a kinetic energy of K = hc/ - 13.6 eV. 




